Минимальные поверхности - definizione. Che cos'è Минимальные поверхности
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è Минимальные поверхности - definizione

ОБЪЕДИНЕНИЕ ПРЯМЫХ, ПРОХОДЯЩИХ ЧЕРЕЗ ФИКСИРОВАННУЮ ТОЧКУ И ПЕРЕСЕКАЮЩИХ ФИКСИРОВАННУЮ ПРОСТРАНСТВЕННУЮ КРИВУЮ
Конические поверхности
  • Круговая коническая поверхность

Минимальные поверхности      

поверхности, у которых средняя кривизна во всех точках равна нулю (см. Кривизна). М. п. появляются при решении следующей вариационной задачи: в пространстве дана некоторая замкнутая кривая; среди всех возможных поверхностей, проходящих через эту кривую, найти такую, для которой часть её, заключённая внутри кривой, имела бы наименьшую площадь (минимальную площадь - отсюда название). Если заданная кривая - плоская, то решением, очевидно, будет ограниченный этой кривой кусок плоскости. В случае неплоской кривой необходимое условие, которому должна удовлетворять поверхность с минимальной площадью, было установлено Ж. Лагранжем в 1760 и несколько позже истолковано геометрически Ж. Мёнье в форме, эквивалентной требованию, чтобы средняя кривизна обращалась в нуль. Хотя это условие не является достаточным, т. е. не гарантирует минимума площади, однако впоследствии название "М. п." было сохранено за всякой поверхностью с нулевой средней кривизной. Если предположить поверхность заданной уравнением z = f (х, у), то, приравнивая нулю выражение для средней кривизны, приходят к дифференциальному уравнению с частными производными 2-го порядка:

(1 + q2)r - 2pqs + (1 + p2)t = 0,

где

Исследованием этого уравнения в различных формах занимались многие математики, начиная с Ж. Лагранжа и Г. Монжа. Примерами М. п. могут служить: обыкновенная Винтовая поверхность; Катеноид - единственная (вещественная) М. п. среди поверхностей вращения; "поверхность Шерка", определяемая уравнением

М. п. имеет во всех точках неположительную полную кривизну. Бельгийский физик Ж. Плато предложил способ экспериментального осуществления М. п. при помощи мыльных плёнок, натянутых на проволочный каркас.

Лит.: Каган В. Ф., Основы теории поверхностей в тензорном изложении, ч. 1, М. - Л., 1947; Курант Р., Роббинс Г., Что такое математика, пер. с англ., 2 изд., М., 1967; Бляшке В., Введение в дифференциальную геометрию, пер. с нем., М., 1957.

ШЕРОХОВАТОСТЬ ПОВЕРХНОСТИ         
  • [[Нормаль]]ный профиль и параметры шероховатости поверхности.
Шероховатость; Профиль поверхности
в машиностроении - совокупность микронеровностей обработанной поверхности. Шероховатость поверхности описывается набором параметров, характеризующих среднюю и максимальную высоты неровностей и их ширины, средние расстояния между ними и т. д. Значения параметров для различных типов изделий и условий их эксплуатации устанавливаются стандартами.
шероховатость         
  • [[Нормаль]]ный профиль и параметры шероховатости поверхности.
Шероховатость; Профиль поверхности
ж.
Отвлеч. сущ. по знач. прил.: шероховатый.

Wikipedia

Коническая поверхность

Коническая поверхность — поверхность, с вершиной O {\displaystyle O} и направляющей G {\displaystyle G} , содержащая все точки всех прямых, проходящих через точку O {\displaystyle O} и пересекающихся с кривой G {\displaystyle G} . Часто под конической поверхностью подразумевают одну из её полостей.

Каноническое уравнение круговой конической поверхности в декартовых координатах x 2 a 2 + y 2 b 2 z 2 c 2 = 0 {\displaystyle {\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}-{\frac {z^{2}}{c^{2}}}=0} .